
Eur. Phys. J. B 22, 111–115 (2001) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
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Abstract. A simple way to acquire information on the mean values of the phase operators sinϕ and cosϕ
of an ultrasmall Josephson junction prepared in an arbitrary pure or not state is reported. Our proposal
exploits the recently predicted occurrence of current spikes in the I-V characteristic of a mesojunction
irradiated by a quantum single-mode low-intensity coherent electromagnetic field. A necessary condition
for the validity of our treatment is presented and discussed.

PACS. 73.23.-b Electronic transport in mesoscopic systems. – 74.50.+r Proximity effects, weak links,
tunneling phenomena, and Josephson effects. – 42.50.Ct Quantum description of interaction of light and
matter; related experiments

1 Introduction

Recent experimental and theoretical studies of small ca-
pacitance tunnel junctions at low temperatures have
revealed a new class of effects as Coulomb blockade, sin-
gle electron tunneling and Bloch oscillations [1–3]. Sev-
eral macroscopic quantum effects in Josephson junctions
(JJ) have been discussed and some of them have been ob-
served in experiments [4–8]. Advances in nanotechnology
and microelectronics should enable the laws of quantum
dynamics to be tested at the macroscopic level [9].

The study of these non classical effects is crucial both
in order to establish the fundamental limits of conven-
tional devices and because such effects open new per-
spectives for future applications, including quantum en-
gineering based on superconductive elements. In order
to analyze such non classical effects, one should con-
sider all the quantities describing the junction as oper-
ators rather than classical variables. The operators cor-
responding to the variables characterizing a Josephson
junction, the phase difference ϕ and the electric charge
q of the geometric capacitance C formed by the junc-
tion electrodes, should satisfy the following commutation
rule [ϕ, q] = 2ei as well as the Heisenberg uncertainty
relation ∆ϕ ∆q ≥ e, usually neglected in the classical
theory of the Josephson effects [2,4,10]. The ratio EC

2EJ
,

EC = (2e)2

C and EJ = ~Icr
2e being the charging and the

Josephson energy respectively, is a reasonable indicator
of the crossover point from classical regime to the quan-
tum one. In the classical regime, in fact, the ground state
of a JJ is a narrowly peaked wavefunction ψ(ϕ) with a
width of the order of ( EC

2EJ
)

1
4 � 1, corresponding to very
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small quantum fluctuations in the phase. By contrast, in
the quantum regime, where EC � EJ, all values of ϕ are
equally probable and we analyze the quantum states of a
JJ by using the more appropriate charge representation
[10]. The intermediate mesoscopic regime, corresponding
to a physical situation in which EJ ∼ EC, characterizes
small-capacitances (C ∼ 1fF ) JJ operating at tempera-
tures T ∼ 10 ÷ 100 mK, where the thermal energy KBT
is lower than the junction energies EJ and EC [10,11].
In order to exploit the fully quantum-mechanical nature
of mesoscopic Josephson junctions, quite recently many
authors have studied the interaction of such a mesode-
vices with non classical electromagnetic fields [12–19]. In
this context, the occurrence of current spikes, called quan-
tum Shapiro steps (QSS), in the I-V characteristic of the
mesojunction irradiated by a single-mode low-intensity co-
herent electromagnetic field has been predicted [12,18,19].
Moreover, it has been proved that the dynamics of a meso-
junction exposed to a monochromatic quantized electro-
magnetic field exhibits an high sensitivity to the quantum
coherences of the radiation field state [20,21].

2 The physical system

The system here analyzed consists of a dc-voltage bi-
ased mesoscopic junction coupled to an external quan-
tized single-mode far-infrared (ω1 ∼ 2π × 1014 Hz) co-
herent field. Let’s suppose that the initial density matrix
ρ(0) describing the combined field-junction system may
be factorized as

ρ(0) = ρJ(0)⊗ ρF(0), (1)
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where ρJ(0) [ρF(0)] describes the material subsystem [ra-
diation field] at t = 0, and ρF(0) = |α〉〈α| with |α〉 =
||α| exp(iθα)〉 and |α| ∼ 1.

It is very difficult to claim for the preparation of a
Josephson junction in a specified state. Nevertheless, in
the context of many experimental schemes involving these
mesodevices, one is mainly interested in the expectation
values of suitable physical quantities rather than in the
knowledge of ρJ(0) in its own.

In this paper we show how to acquire information on
Tr[ρJ(0) sinϕ] and Tr[ρJ(0) cosϕ] at t = 0 without knowing
in advance the form of ρJ(0). Besides its intrinsic interest,
our proposal provides the first essential step of a proce-
dure aimed at detecting the intensity |α| and the phase θα
of an unknown e.m. coherent state by means of a meso-
scopic JJ. The method we are going to present relies on
the possibility of measuring the first two quantum Shapiro
steps in the I-V characteristic of a mesoscopic JJ exposed
to quantized single-mode electromagnetic fields.

3 The Hamiltonian model
and the supercurrent time evolution

It is well known that, adopting the Voltage Bias Model and
neglecting the quasiparticle tunneling, the Hamiltonian of
the junction-field system can be cast in the following form
[21,22]:

H=
[q + C(V0 + VF)]2

2C
+EJ(1− cosϕ)+~ω1

(
a†a+

1
2

)
.

(2)

Here VF = |E|d = i
√

( ~ω1
2CF

)(a − a†) is the non classical
electromotive force imposed on the superconductive device
and V0 is the dc voltage bias.

Let’s begin by considering the Heisenberg equations of
motion for the representative operators q, ϕ, a and a† of
the combined system:

I ≡ −∂q
∂t

= Icr sinϕ (3)

∂ϕ

∂t
=

2e
~

(
q

C
+ V0 + VF) (4)

∂a

∂t
= −iω1a− (q + CV0)

√
ω1

2~CF
− i

ω1

2
C

CF
(a− a†) (5)

∂a†

∂t
= iω1a

† − (q + CV0)
√

ω1

2~CF
− i

ω1

2
C

CF
(a− a†). (6)

This complicated operator coupled differential equations
system cannot be analytically solved. However, as showed
in references [12,21], in the external field approximation

the equation for the operator ϕ may be approximately
reduced to the form:

ϕ̇ ≈ 2e
~

[
V0 + i

√
~ω1

2CF
(ae−iω1t − a†eiω1t)

]
. (7)

Integrating equation (7) is now an easy matter and gives

ϕ(t) ≈ ϕ0 +
2e
~

[
V0t−

√
~

2ωCF
(ae−iω1t + a†eiω1t)

]
, (8)

where ϕ0 = ϕ(t = 0) is the phase operator in the
Schrödinger picture. Substituting ϕ(t) into equation (3)
immediately enables to find the explicit form of the time
evolution of supercurrent operator I(t) as

I(t)
Icr
≈ sin[ϕ0 + ω0t− ξ(ae−iω1t + a†eiω1t)]. (9)

Here ~ω0 = 2eV0 and ξ =
√

2e√
~ω1CF

is a real number re-
lated to the capacitive parameter depending on the barrier
thickness (d ∼ 1 nm) and the field frequency ω1.

In order to evaluate 〈I(t)〉 = Tr[ρ(0)I(t)], it is useful
to cast the supercurrent operator in the form

I(t) = IcrIm{eiϕ(t)}. (10)

Taking into account that Tr[Im[eiϕ(t)]] = Im[Tr[eiϕ(t)]], the
supercurrent operator expectation value 〈I(t)〉 assumes
the following form

〈I(t)〉 = Icre−
ξ2

2

×
(

sin[ω0t+ 2ξ|α| sin(ω1t− θα −
π

2
)]Tr[ρJ(0) cosϕ0]

+ cos[ω0t+ 2ξ|α| sin(ω1t− θα −
π

2
)]Tr[ρJ(0) sinϕ0]

)
.

(11)

Equation (11), valid in the time interval [ω−1
1 , Ω−1

p ]
[12,21], reveals sensitivity of the supercurrent crossing
a mesojunction to the intensity |α| and the phase θα
of the coherent single-mode field which it is coupled
to. Unfortunately, such a circumstance, due to the im-
possibility of measuring currents oscillating at very-high
frequencies, does not enable detection of the field pa-
rameters |α| and θα. Nevertheless, exploiting the Fourier-
Bessel expansion of sin[ω0t+ 2ξ|α| sin(ω1t− θα − π

2 )] and
cos[ω0t + 2ξ|α| sin(ω1t − θα − π

2 )], equation (11) may be
cast in the following form:

〈I(t)〉
Icr

= e−
ξ2

2

(
Tr[ρJ(0) cosϕ0]

∞∑
k=−∞

Jk(2ξ|α|)S(t)

+Tr[ρJ(0) sinϕ0]
∞∑

k=−∞
Jk(2ξ|α|)C(t)

)
(12)

where S(t) = sin[(ω0 + kω1)t − kθα − k π2 ] and C(t) =
cos[(ω0 + kω1)t− kθα − k π2 ].
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It is easy to show that, under the nth resonance con-
dition, defined as ω0 = +nω1, the expectation value of
the supercurrent operator displays a dc component I(n)

dc ,
known as nth quantum Shapiro step [12,21], given by the
expression:

I
(n)
dc = Icre−

ξ2

2 Jn(2ξ|α|)(−1)n

×
(

sin[n(θα +
π

2
)]Tr[ρJ(0) cosϕ0]

+ cos[n(θα +
π

2
)]Tr[ρJ(0) sinϕ0]

)
(13)

where Jn(z) is the Bessel function of order n.
It is interesting to compare this result with the well

known expression of the nth Shapiro step appearing in the
I-V characteristic of a large capacitance (C ∼ 10−12 F)
JJ biased by a combined dc and ac voltage given by V =
V0 + V1 sin(ω1t − θα) [22]. To this end, we evaluate the
expectation value 〈VF〉 of the non classical electromotive
force with respect the initial system state ρ(0), getting

〈VF〉 = 2(
~ω1

2CF
)

1
2 |α| sin(ω1t− θα) ≡ V1 sin(ω1t− θα).

(14)

This enables the identification V1 ≡ 2( ~ω1
2CF

)
1
2 |α| from

which, in view of the definition of ξ given after equation
(9), we arrive at 2ξ|α| = 2eV1

~ω1
that is the expected argu-

ment of the Bessel functions in the classical case. Thus,
apart from the exponential factor e−

ξ2
2 , whose presence

may be traced back to the non commutativity between
the creation and annihilation field operators, we claim that
equation (13) reduces to the expected classical expression
of the nth Shapiro step.

4 Initial expectation values of cosϕ and sinϕ

Since it is very difficult to claim for the preparation of
the JJ in a prefixed state, equation (13) cannot be used
to predict I(n)

dc since its expression contains the unknown
initial mean values of sinϕ and cosϕ. Also, since Icr is of
the order of or less than 1 µA only the first QSS in the
I-V characteristic of a mesojunction exposed to a very
low-intensity coherent field can be practically measured
in an accurate way. The structure of equation (13) thus
suggests that, if we known the e.m. parameters |α| and θα
of the field irradiating the JJ, the two n-independent ex-
pectation values Tr[ρJ(0) sinϕ0] and Tr[ρJ(0) cosϕ0] can
be read out from quantum current measurements.

It is worth noting that the injected electromagnetic
field power is compatible with the predicted appearance
of QSS in the Josephson junction characteristic. In fact,
the power PF provided by the irradiating field, estimated
as PF = SA ∼ 10−8 Watt, where S = 1

2ε0cE
2
max is the

single-photon Poynting vector and A ∼ 0.1 µm2 the junc-
tion area, is much greater than that required for the QSS
appearance. This last power, estimable as [I(n)

dc ]2Rn, with

Rn ∼ RQ = 6, 5 kΩ results, in fact, less than PF, when
steps I(n)

dc < µA are considered.
Our idea is to couple the dc-voltage biased mesojunc-

tion, cooled down to a specified temperature between
10÷100 mK, with an e.m. field prepared in a real coherent
state whose intensity |α| is a priori known. If, in such con-
ditions, the amplitude I(0)

dc and I(1)
dc of the zeroth order and

first order QSS respectively are measured, then, in accor-
dance with the prediction expressed by equation (13), we
get a linear decoupled system from which Tr[ρJ(0) sinϕ0]
and Tr[ρJ(0) cosϕ0] may be immediately deduced as

Tr[ρJ(0) sinϕ0] =
I

(0)
dc e

ξ2

2

IcrJ0(2ξ|α|) (15)

Tr[ρJ(0) cosϕ0] = − I
(1)
dc e

ξ2
2

IcrJ1(2ξ|α|) · (16)

The knowledge of the mean values expressed by equa-
tions (15) and (16) does not allow determination of ρJ(0).
However, it is worth noting that we know just those prop-
erties of the JJ initial state which, in view of equation
(13), play an essential role to investigate the structure of
the QSS of a JJ irradiated by a weak coherent field having
an arbitrary complex amplitude.

This means that, measuring in such conditions again
the first two QSS amplitudes and inserting their values in
the analytical expressions

I
(0)
dc = Icre−

ξ2

2 J0(2ξ|α|)Tr[ρJ(0) sinϕ0] (17)

I
(1)
dc = −Icre−

ξ2

2 J1(2ξ|α|)

×
(

cos θαTr[ρJ(0) cosϕ0]− sin θαTr[ρJ(0) sinϕ0]
)

(18)

deduced from equation (13), we can immediately derive
the parameters |α| and θα of an unknown coherent field.

Let us attempt now an estimate of the amplitudes of
I

(0)
dc and I

(1)
dc under scrutiny. To this end consider that

|Tr[ρJ(0) cosϕ0]| ≤ 1 and |Tr[ρJ(0) sinϕ0]| ≤ 1, so that
equations (17) and (18) predict that I

(0)
dc and I

(1)
dc are

smaller than I
(0)
M and I(1)

M defined as follows:

I
(0)
M

Icr
= e−

ξ2

2 J0(2ξ|α|) (19)

I
(1)
M

Icr
= 2e−

ξ2

2 J1(2ξ|α|). (20)

Figures 1 and 2 report the behaviour of |I(0)
M | and |I(1)

M |
(in unit of Icr) respectively as a function of |α|, showing
the existence of possible values of I(0)

dc and I
(1)
dc compat-

ible with the current experimental setup. It is moreover
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Fig. 1. Plot of |I(0)
M /Icr| as a function of |α|.

 

Fig. 2. Plot of |I(1)
M /Icr| as a function of |α|.

instructive to plot I(0)
dc and I(1)

dc , as given by equations (17)
and (18), as functions of the initial mean values of cosϕ0

and sinϕ0, in the interval [−1, 1]. Figures 3 and 4 refer to
|I(0)

dc | and |I(1)
dc | (in unit of Icr) respectively, when |α| = 1.

Even these plots confirm the existence of physical condi-
tions wherein the amplitudes of the two first steps turns
out to be measurable. Figure 5 finally represents |I(1)

dc /Icr|
as a function of |α| and θα when 〈sinϕ0〉 = 〈cosϕ0〉 = 0.5.

The dynamical variables describing the time depen-
dent behaviour of the JJ are operators characterized by
not negligible quantum fluctuations.

In particular, the fluctuations of the supercurrent op-
erator 〈(∆I)2〉 ≡ 〈I2〉−〈I〉2, can be explicitly expressed as

〈(∆I)2〉 = I2
cr[〈sin2 ϕ〉 − 〈sinϕ〉2] (21)

where 〈O〉 ≡ Tr[Oρ(0)]. In analogy with supercurrent
operator I(t), we may calculate the expectation value of
I2(t), finding that its nth dc component 〈I2〉(n)

dc can be
cast in the form

〈I2〉(n)
dc = I2

cr

[
1
2
− e−2ξ2

2
J2n(4ξ|α|)

(
〈cos 2ϕ0〉J

× cos[2n(θα +
π

2
)]− 〈sin 2ϕ0〉J sin[2n(θα +

π

2
)]
)]
. (22)

Analyzing equation (22) it turns out that, coupling
the dc-voltage biased mesojunction whit an e.m. field

 

Fig. 3. Plot of |I(0)
dc /Icr| as functions of the initial mean values

of cosϕ0 and sinϕ0, in the interval [−1,1], when |α| = 1.

 

Fig. 4. Plot of |I(1)
dc /Icr| as functions of the initial mean values

of cosϕ0 and sinϕ0, in the interval [−1, 1], when |α| = 1.

 

Fig. 5. Plot of |I(1)
dc /Icr| as a function of |α| and θα when

〈sinϕ0〉 = 〈cosϕ0〉 = 0.5.
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prepared in a real coherent state |α〉 = ||α|〉, the following
relation

J0(4ξ|α|)[2〈I2〉(1)
dc − I2

cr] = J2(4ξ|α|)[I2
cr − 2〈I2〉(0)

dc ] (23)

between quantities related to zeroth order QSS and first
order QSS does exist. It is of relevance that equation (23)
establishes a connection between quantities like 〈I2〉(0)

dc

and 〈I2〉(1)
dc which, in principle, may be deduced from mea-

surements of the quantum fluctuations associated to the
zeroth order and first order Shapiro steps amplitudes. In
this way, such a relation may be tested in laboratory vali-
dating the approximated treatment reported in this paper
or, in the negative case, inducing to reconsider some deli-
cate aspects of this approach, as for example the external
field approximation on which the derivation of the explicit
expression of the Heisenberg operator I(t) is based.
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